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Abstract— This paper presents an application of the interval
fuzzy model (INFUMO) in fault detection and isolation for
a class of processes with uncertain interval-type parameters.
Confidence data bands for the process input-output pairs are
approximated using a fuzzy model with interval parameters.
The approximation, based on linear programming, employs
l∞-norm as the modelling error measure. Arbitrary sets of
identification input signals can be used due to the application
of low-pass filtering when obtaining the confidence bands. Using
a combination of INFUMOs makes it possible to devise a
fault-isolation scheme based on the given incidence matrix.
Simulation results of a fault detection and isolation for a two-
tank system are provided, which illustrate the relevance of the
proposed FDI method.

I. I NTRODUCTION

Fault detection and isolation (FDI) problem is not new
in the research world; in fact, FDI for linear systems has
been extensively studied since the mid-seventies, and during
that period a lot of powerful methods have been developed.
A thorough review of the FDI methods is given in survey
papers [4], [6], and [7]. However, if the monitored system
is strongly nonlinear the use of the linear approaches is
limited. Many industrial systems indeed exhibit nonlinear
behaviour, therefore it is somehow expected that nonlinear
FDI methods will play a significant role in practical applica-
tions. Recently, observer-based approaches [5], and different
forms of artificial-intelligence applications (fuzzy models
[2] and neural networks [9]) have been proposed. Most of
the above-mentioned methods are based on adecoupling
framework, where the modelling uncertainty and all possible
faults can be decoupled through various residual formation
and calculation. However, the modelling uncertainty is often
unstructured, which makes it difficult to achieve exact decou-
pling between faults and modelling errors. In addition, some
problems taking into consideration the input-output represen-
tation of systems as well as the design of the corresponding
nonlinear observers are still open. Furthermore, in industrial
applications simple and robust solutions are often sought to
tackle process-monitoring problems.

In this paper a fault detection and isolation problem in
nonlinear input-output systems with unstructured interval-
type uncertainties is addressed. In [13] a FDI method using
nonlinear adaptive fault estimators for dealing with a similar
system type was given. The presented approach is based
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on the use of the interval fuzzy model (INFUMO). As
was introduced in [10], by applying a Takagi-Sugeno-type
[8] fuzzy model with interval parameters, one is able to
approximate the upper and lower boundaries of the domain of
functions that result from an uncertain system. The INFUMO
is therefore intended for robust modelling purposes; on the
other hand, studies show it can be used in fault detection
as well. The novelty lies in defining of confidence bands
over finite sets of input and output measurements in which
the effects of unknown process inputs are already included.
Moreover, it will be shown that by data pre-processing the
INFUMO parameter-optimization problem will be signifi-
cantly reduced. By calculating the normalized distance of the
system output from the boundary model outputs, a numerical
fault measure is obtained. The main idea of the proposed
approach is to use the INFUMOs in an FDI system as
residual generators, and combine the INFUMO outputs for
the purpose of fault isolation. Due to data pre-processing, the
decision stage is robust to the effects of system disturbances.

The paper presents an application of the INFUMO in fault
detection and isolation for the two-tank system with interval-
type uncertain parameters. The FDI problem was split into
two steps. In the former step the INFUMOs along with data
pre-processing and low-pass filtering were introduced into
the fault detection scheme. In the latter the combination of
residuals was used in the fault-isolation stage. In its final part
the paper gives some outlines of the possible future work.

II. U SING THE FUZZY INTERVAL MODEL IN FAULT

DETECTION AND ISOLATION

A. Preliminaries

Let the nonlinear process be given in a general form as
follows:

ẋ(t) = σ(x, u, t) + η(x, u, t) + φ(x, u, t)
y(t) = γ (x, u, t) + ρ(x, u, t)

(1)

where x ∈ Rn is the state vector of the system,u ∈ R
is the system input,y ∈ Rm denotes the system output,
η : Rn×R×R+ → Rn andρ : Rn×R×R+ → Rm represent
the effects of the modelling uncertainties and disturbances
on the system states and outputs,φ ∈ Rn × R× R+ → Rn

denotes the fault function, andσ : Rn ×R×R+ → Rn and
γ : Rn × R× R+ → Rm are the nonlinear functions of the
state vector, the input, and time, respectively. Throughout the
paper the following assumptions will be made:

Assumption 1: The modelling uncertainties, represented
by η and ρ in (1), are unstructured unknown nonlinear



functions of x, u and t, but bounded by some known
functionals[13], i.e.,

|η(x, u, t)| ≤ η(y, u, t), |ρ(x, u, t)| ≤ ρ(y, u, t),
∀(x, y, u) ∈ X × Y × U , ∀t ≥ 0

(2)

where the bounding functionsη(y, u, t) and ρ(y, u, t) are
known and uniformly bounded.X ⊂ Rn is some compact
domain of interest, andU ⊂ R andY ⊂ R are the compact
sets of admissible inputs and outputs, respectively.

Assumption 2: The output functionsyi(t), i = 1, . . . , m,
whenφ(x, u, t) = 0, are bounded by the following interval:

yi(t) ∈
[
y

i
(t), yi(t)

]
⊂ Y (3)

Assumption 1 characterizes the possible modelling uncer-
tainties as unstructured but bounded by some constant or
function, and Assumption 2 guarantees that in the absence
of faults the bounds of the interval can be determined. As
a consequence, a confidence bands of outputs guarantee that
process outputs exhibiting normal behaviour are found in the
intervals

[
y

i
, yi

]
. However, due to the unknown effect of

the actual disturbance functions the exact bounds cannot be
defined analytically. In the proposed approach, introducing
the interval fuzzy model, the boundary responses will be
obtained by a fuzzy function approximation of the bounds
of a set of filtered input-output data that already comprises
the effects of disturbances.

B. Derivation of an interval fuzzy model

A short description of the model derivation will be given,
and for further information the reader is referred to [10].

A static fuzzy TS-type model [8] in affine form with one
antecedent variable can be given as a set of rules

Rj : if xp is Aj , then y = θT
j x, j = 1, . . . , m (4)

The variablexp denotes the input or variable in premise, and
variabley is the output of the model. The antecedent variable
is connected withm fuzzy setsAj , and each fuzzy setAj

(j = 1, . . . , m) is associated with a real-valued function
µAj (xp) : R → [0, 1], that produces a membership grade
of the variablexp with respect to the fuzzy setAj . The
consequent vector is denotedxT = [x1, x2, . . . , xn, 1]. As
the output functions are in affine form, 1 was added to the
vector x. The system output is a linear combination of the
consequent states, andθj is a vector of fuzzy parameters.
The system in Eq. (4) can be described in closed form

y = βT (xp)Θx, (5)

whereΘT = [θ1, ..., θm] denotes a coefficient matrix for the
complete set of rules, andβT (xp) = [β1(xp), . . . , βm(xp)] is
a vector of normalized membership functions with elements
that indicate the degree of fulfilment of the respective rule.
Functionsβj(xp) can be defined as

βj(xp) =
µAj (xp)∑m

j=1 µAj (xp)
, j = 1, . . . ,m, (6)

if the partition of unity is assumed.
A model parameter estimation usingl∞-norm as a crite-

rion for the measure of the modelling error will be considered
next. LetC ⊂ Rn+2 be a compact set andG = {g : C → R}
be a class of nonlinear functions. Let us assume that there
exist the exact upper boundg and the exact lower boundg
that satisfy the following conditions for an arbitraryε > 0
and for eachz = [xp xT ]T :

g(z) ≥ max
g∈G

g(z), ∃g ∈ G : g(z) < g(z) + ε (7)

g(z) ≤ min
g∈G

g(z), ∃g ∈ G : g(z) > g(z) + ε (8)

Obtaining the bounds in Eqs. (7) and (8) would require
an infinite amount of data; however, in this case we are
limited to the finite set of measured output valuesY =
{y1, y2, . . . , yN} and the finite set of input dataZ =
{z1, z2, . . . , zN}:

yi = g(zi), g ∈ G, zi ∈ C ⊂ R, yi ∈ R, i = 1, . . . , N (9)

Therefore, the upper and the lower boundary functions are
approximated by fuzzy functions in the form given by Eq.
(5). Extending the Stone-Weierstrass Theorem [11], there
exist fuzzy systemsf andf such that

0 < f(zi)− g(zi) < ε, ∀i,
−ε < f(zi)− g(zi) < 0, ∀i. (10)

The main requirement when defining the band is that it is as
narrow as possible, within the proposed constraints.

To estimate the optimal parameters of the proposed fuzzy
function the minimization of the maximum modelling error
ε in Eq. (10) over the whole input setZ is performed. This
implies themin-maxoptimization method, andl∞-norm is
used as the modelling error measure, yielding

min
Θ

max
zi∈Z

∣∣yi − f(zi)
∣∣ s.t.yi − f(zi) ≥ 0,

min
Θ

max
zi∈Z

∣∣yi − f(zi)
∣∣ s.t.yi − f(zi) ≤ 0.

(11)

where f(zi) = βT Θx(zi) and f(zi) = βT Θx(zi). Note
that the data are obtained by sampling different functions
from G with arbitrary values ofzi. The solutions to both
problems can be found by linear programming, because both
problems can be viewed as linear programming problems,
and this brings simplicity to the realization of the optimizing
process.

C. Residual formation and fault-isolation scenario

The main idea of the fault-detection approach is to fil-
ter both the input and the output data, thus obtaining a
confidence band of filtered input-output data pairs, approx-
imate the band using the optimization procedure of the
INFUMO, and connect as many INFUMOs as there are
outputs in parallel to the process to get online estimations
of the boundary outputs. For fault detection, the decision
functions should consist of verifying that each measurement
belongs to the corresponding confidence band. In order to
provide quantitative information about the proximity of the



measurements to the closest interval bound, distances were
used, as presented in [3]. If a filtered output valueyfi(t)
belongs to the corresponding interval

[
y

fi
(t), yfi(t)

]
, and

if the mean interval value is denoted̃yfi(t), the proposed
distance is defined in the following way:

if yfi(t) < ỹfi(t), d(yfi) =
yfi(t)− ỹfi(t)
y

fi
(t)− ỹfi(t)

if yfi(t) > ỹfi(t), d(yfi) =
yfi(t)− ỹfi(t)
yfi(t)− ỹfi(t)

(12)

The distance in (12) is zero when the measurement is equal
to ŷf , and approaches the value 1 if the measurement is
close to one of the interval bounds. A faultfi = 1 is
signalled every timed(yfi) exceeds the value 1, andfi = 0
otherwise. For fault isolation purposes the fault signals are
characterized by an incidence matrix. The rows of this matrix
belong to residuals and its columns are obtained in response
to the particular faults. The structure is isolating if columns
are different. In our case, a fault is characterized by a
corresponding 3-digit binary number where fault signalsfi

are the multiples of succesive powers of number 2 (2i−1).
Fig. 1 gives a schematic representation of the proposed fault-
isolation system. The block denoted LPF represents a linear
filter, and the distances are calculated in the DIST blocks,
connected to the outputs of the INFUMOs. The output of
the block denoted Fault isolation logic,f , is a sum of the
products of the fault signalsf = f1 · 20 + f2 · 21 + f3 · 22.
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Fig. 1. Fault-isolation system using INFUMO models for FD

III. S IMULATION EXAMPLE

In this section the benefits of the proposed method will be
illustrated by a simulation example. A well-known bench-
mark problem will be considered. It deals with a laboratory
plant using two tanks with fluid flow, as was described in
[12]. The two cylindrical tanks are identical, with a cross
sectionAs = 0.0154 m2. The cross section of the connection
pipe and the outlet pipe isSp1 = Sp2 = 3.6 · 10−5 m2,
and the liquid levels in the two tanks are denotedh1 and
h2, respectively. The plant-setup scheme is presented in Fig.
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Fig. 2. Two-tank laboratory plant

2. The supplying flow rates coming from an electric pump
to tank 1 are denotedq1(t), and there is an outflow from
tank 2 denotedq2(t). Using the mass balance equations and
Toricelli’s rule, the following equations are obtained:

ḣ1 =
1

As

(
−Kp1sign(h1 − h2)

√
2g|h1 − h2|+ q1

)

ḣ2 =
1

As

(
Kp1sign(h1 − h2)

√
2g|h1 − h2| −Kp2

√
2gh2

)

(13)

whereKp1 = a1Sp1 and Kp2 = a2Sp2 denote the outflow
constants, andg is the gravity acceleration. Leta1 = a2 = 1
for the sake of simplicity.

To get an input-output system that is similar to industrial
processes the model will be modified in the following way.
The input to the system is the electric-pump voltageu1(t)
that produces the inlet flow

q1(t) = Ku

(
1 + ν1(t)

)
u1(t), (14)

where Ku is the voltage-to-flow-conversion constant, and
ν1(t) denotes the inaccuracy of the conversion. The first two
measurable output signals are the voltages of the pressure
sensors, converting the fluid levelsh1(t) andh2(t) in tanks
1 and 2 into the output voltagesy1(t) and y2(t) according
to the following equation:

y1(t) = Kh1

(
1 + ν2(t)

)
h1(t)

y2(t) = Kh2

(
1 + ν3(t)

)
h2(t),

(15)

where Kh1 and Kh2 are the height-to-voltage-conversion
constants, andν2(t) andν3(t) denote the inaccuracies of the
conversion. The third output is the voltagey3(t) produced
by a flow-meter mounted on the connection pipe. The flow
q12(t) is transformed into voltage following the equation

y3(t) = Kq

(
1 + ν4(t)

)
q12(t), (16)

where Kq and ν4(t) are presented analogously as in (15).
The values of the constants areKu = 8.8 · 10−6 m3/Vs,
Kq = 1.1364 · 105 Vs/m3 andKh1 = Kh2 = 16.667 V/m,
and the upper bounds of the inaccuracies areν1 = ν2 =
ν3 = ν4 = 0.03.



The set of faults under consideration will follow the
examples presented in [14] and [12], with the exception of
three additional sensor faults that will serve as an efficiency
test for the proposed fault-isolation system. The following
faults will be considered:
• Leakage in tank 1. The leak is assumed to be circular

in shape and of unknown radiusr1. As a consequence,
the outflow rate of the unknown-size leak isqf1 =
a1π(r1)2

√
2gh1.

• Leakage in tank 2. Analogously to the case of leakage
in tank 1, the outflow rate isqf2 = a2π(r2)2

√
2gh2.

• Offset in sensor 1. A simple multiplicative sensor
fault is assumed by letting the actual voltage value
be described bȳy1(t) = y1(t) + (1 − K1off )y1(t),
where y1(t) is the voltage in the non-fault case, and
K1off ∈ [0, 1] is the fault constant.

• Offset in sensor 2. Analogously to the case of the offset
in sensor 1, the actual voltage is described byȳ2(t) =
y2(t) + (1−K2off )y2(t).

• Offset in sensor 3. Analogously to the previous cases,
the actual voltage is described byȳ3(t) = y3(t) + (1−
K3off )y3(t).

With reference to the given INFUMO identification proce-
dure, a confidence band of input-output data must be defined.
This band will also include all unexpected output deviations
due to parameter uncertainties. A set of 20 experiments was
carried out. The inputs and associated signals from the first
output are shown in Fig. 3, and the associated signals from
the other two outputs are presented in Fig. 4. For the sake
of brevity, only the first, the second, and the last data sets
are presented. One of the major benefits of the interval fuzzy
model identification, shown in Fig. 3, is that the input signals
can be arbitrary.
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Fig. 3. The inputs and first output signals: the first, the second, and the
last experiment

The input and output signals are lead through a low-pass
filter (LPF) whose structure was chosen as a simple first-
order system, represented by the transfer functionGf =
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Fig. 4. The second and the third output signals: the first, the second, and
the last experiment

1/(Tfs + 1). The optimal design of the LPF time constant
was not considered in this study. The cut-off frequency
ωf was chosen according to the absolute values of the
Fourier transforms of the output signals. Hence, the filter
time constant was defined asTf = 1/ωf = 800 s. This way
three compact sets of measurements that represent steady-
state system behaviours are obtained. They can be seen as
approximations of static input-output mapping areas. Plots
in Fig. 5 present the areas.
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Fig. 5. Set of filtered input-output data with boundary points and boundary
INFUMO functions for the first, second and third outputs

To avoid the problems with optimization convergence due



to vast amount of input-output data, a simple data-reduction
method was performed to determine the boundary points.
The range of input measurements was divided into subspaces
of equal length that was chosen in accordance to the subspace
with the highest data density. In each subspace the extremal
points were determined. Due to space limitations only the
resulting sets of boundary points are shown in the plots of
figure 5. These data were used as the training data set for the
INFUMO identification. Static INFUMOs were employed.
This brings additional reduction of the number of fuzzy
parameters to be optimized. The membership functions of the
INFUMO antecedent variables were of triangular shape and
arranged using grid partitioning [1]. According to the data-
area shape, it was sufficient to use 4 fuzzy subsets for the
upper and lower fuzzy functions. The membership functions
are presented in figure 6.
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Fig. 6. Input test signal and membership-function arrangement for the
INFUMOs

The parameters were optimized using the proposed IN-
FUMO optimization algorithm in (11). The resulting bound-
ary functions can be seen in figure 5. It is evident that the
min-maxoptimization gave satisfactory results in approxi-
mating the given area.

To realize a fault-isolation system, the INFUMOs are
connected to the process in parallel, as shown in Fig. 1. In
the test experiment a leakage ofr1 = 2 ·10−3 m in tank 1 is
assumed to occur in the time periodtleak1 = 10000−15000

s, a leakage ofr2 = 2 · 10−3 m in tank 2 at tleak2 =
20000 − 25000 s, a 20% offset in sensor 1 (K1off = 0.2)
at t1off = 30000 − 35000 s, a 20% offset in sensor 2
(K2off = 0.2) at t2off = 40000 − 45000 s, and a 20%
offset in sensor 3 (K3off = 0.2) at t3off = 50000− 55000
s, respectively. The input test signal is presented in the upper
plot of Fig. 6. According to the fault signals from the DIST
blocks, the incidence matrix was defined as given in Table
I.

TABLE I

INCIDENCE MATRIX FOR THE SET OF FAULTS

Fault Leak 1 Leak 2 Offset 1 Offset 2 Offset 3
f1 1 1 1 0 0
f2 1 1 0 1 0
f3 1 0 0 0 1
f 7 3 1 2 4

The results of the test are presented in figures 7 to 9. The
upper diagrams demonstrate the distance-calculation, and in
the lower diagrams the filtered process outputsyfi and the
INFUMO boundary functionsyfi, y

fi
are shown.
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Fig. 7. Results of the fault detection with INFUMO1

The proposed FD system using the INFUMOs successfully
tracks the filtered output crossings of the permitted bands. In
the shaded areas, faults are declared with a reasonably small
time delay, depending on the time constant of the proposed
low-pass filter. The result of the fault-isolation system is
presented in 10.

It can be seen that the FDI system successfully tracks and
characterizes all the faults from the given set.

IV. CONCLUSION

A novel approach of the fault detection and isolation for
a class of nonlinear input-output systems was presented.
The interval fuzzy model (INFUMO), formerly used in
robust identification of nonlinear functions, was applied in
the residual generation stage of the FDI. The benefit is to
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Fig. 9. Results of the fault detection with INFUMO3

be able to model a family of system responses from the
confidence band, already including the effects of uncertain-
ties, that is based only on the input-output data. Applying
low-pass filtering when obtaining the input-output data set
makes it possible to use relatively simple fuzzy structure
of the INFUMO, without any significant loss in FD-stage
efficiency. The presented example illustrates that by using
the INFUMO-based approach, faults can be successfully
isolated, even though only a limited amount of the input-
output data is available.

Investigating the performance changes resulting from dif-
ferent choices of filter structure, applying the proposed
method on a broader range of systems, and investigating
possible extensions to frequency-based methods and fault-
tolerant control deserves further attention. In addition, the
results of the simulated example demonstrate the quality of
performance coupled with simplicity of application, which
is very important from the application point of view.
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