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Abstract— This paper presents an application of the interval
fuzzy model (INFUMO) in fault detection and isolation for
a class of processes with uncertain interval-type parameters.
Confidence data bands for the process input-output pairs are
approximated using a fuzzy model with interval parameters.
The approximation, based on linear programming, employs
lo-norm as the modelling error measure. Arbitrary sets of
identification input signals can be used due to the application
of low-pass filtering when obtaining the confidence bands. Using
a combination of INFUMOs makes it possible to devise a
fault-isolation scheme based on the given incidence matrix.
Simulation results of a fault detection and isolation for a two-
tank system are provided, which illustrate the relevance of the
proposed FDI method.

I. INTRODUCTION

on the use of the interval fuzzy model (INFUMO). As
was introduced in [10], by applying a Takagi-Sugeno-type
[8] fuzzy model with interval parameters, one is able to
approximate the upper and lower boundaries of the domain of
functions that result from an uncertain system. The INFUMO
is therefore intended for robust modelling purposes; on the
other hand, studies show it can be used in fault detection
as well. The novelty lies in defining of confidence bands
over finite sets of input and output measurements in which
the effects of unknown process inputs are already included.
Moreover, it will be shown that by data pre-processing the
INFUMO parameter-optimization problem will be signifi-
cantly reduced. By calculating the normalized distance of the
system output from the boundary model outputs, a numerical

Fault detection and isolation (FDI) problem is not NeWault measure is obtained. The main idea of the proposed

in the resea_rch Worlq; in fact, FDI fpr linear _systems ha_a proach is to use the INFUMOs in an FDI system as
been extensively studied since the mid-seventies, and durl&g5

h iod a lot of ol hods h b devel idual generators, and combine the INFUMO outputs for
that period a lot of powerful methods have been develope e purpose of fault isolation. Due to data pre-processing, the

A thorough review of the FDI methods is given in SUNV€Yqecision stage is robust to the effects of system disturbances.

pap(tars [‘:]’ [6], lgnd [7#] Howeve;, tlrf1 th? monitored sy;,tem The paper presents an application of the INFUMO in fault
IS strongly noniinear the use ot Ineé linéar approaches |petion and isolation for the two-tank system with interval-
limited. Many industrial systems indeed exhibit nonlinea

behavi theref it i h ted that i t pe uncertain parameters. The FDI problem was split into
enhaviour, theretore 1t 1S somenow expected thal nontinegy,, steps. In the former step the INFUMOSs along with data
FDI methods will play a significant role in practical applica-

. . re-processing and low-pass filtering were introduced into
tons, RecenFIy,lob'servgr-based approe}ches [5], and d|ffen$m5 fault detection scheme. In the latter the combination of
forms of artificial-intelligence applications (fuzzy models

residuals was used in the fault-isolation stage. In its final part
[2] and neural n_etworks [9]) have been proposed. MOSt %he paper gives some outlines of the possible future work.
the above-mentioned methods are based omeeoupling
framework, where the modelling uncertainty and all possible |
faults can be decoupled through various residual formation
and calculation. However, the modelling uncertainty is often o
unstructured, which makes it difficult to achieve exact decod®: Preliminaries
pling between faults and modelling errors. In addition, some |et the nonlinear process be given in a general form as
problems taking into consideration the input-output represefoellows:
tation of systems as well as the design of the corresponding
nonlinear observers are still open. Furthermore, in industrial
applications simple and robust solutions are often sought to y(t) = v (z,u,t) + p(x, u,t)

tackle process-monitoring problems. _Wherez € R" is the state vector of the system, ¢ R

In this paper a fault detection and isolation problem iNg the system inputy € R™ denotes the system output,
nonlinear input-output systems with unstructured interval: . pn  p R+ _, g7 andp : R" xR xR+ — R™ represent
type_uncertalntl_es IS addre_ssed. In [13] a '_:DI method_ USINge effects of the modelling uncertainties and disturbances
nonlinear adaptive fault estimators for dealing with a S|m|IaBn the system states and outputssz R™ x R x R+ — R”

system type was given. The presented approach is ba§fjeédnotes the fault function, and: R x R x RT — R” and
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. USING THE FUZZY INTERVAL MODEL IN FAULT
DETECTION AND ISOLATION

&(t) = o(x,u, t) + n(z,u, t) + ¢(x, u, t) 1)



functions of z, v and t, but bounded by some knownif the partition of unity is assumed.
functionals[13], i.e., A model parameter estimation usiig-norm as a crite-
_ _ rion for the measure of the modelling error will be considered
< <

‘77(557 U, t)l = 77(:‘/7 u, t)7 Ip(xa u, t)' = p(y7 u, t)a (2) next. LetC C Rn+2 be a CompaCt set a@: {g . C s R}

V(z,y,u) € X x Y xU, Yt =0 be a class of nonlinear functions. Let us assume that there

where the bounding functiors(y, v, t) and p(y,u,t) are exist the exact upper bounigland the exact lower boung
known and uniformly boundedt ¢ R™ is some compact that satisfy the following conditions for an arbitrary> 0
domain of interest, ané¢ c R and) c R are the compact and for eachz = [z, a’]"

sets of admissible inputs and outputs, respectively. () > .=
9(z) > maxg(z), g €G:9(2) <g(z) e (7)

Assumption 2: The output functiong;(¢), i = 1,...,m,
wheng(z,u,t) = 0, are bounded by the following interval: g(z) <ming(z), g€ G:g9(z) > g(z) +¢ (8)
= ~ g€g ’ =
vi(t) € [ﬂi(t)v?i(t)} cYy (3)  Obtaining the bounds in Egs. (7) and (8) would require

an infinite amount of data; however, in this case we are

Assumption 1 characterizes the possible modelling uncefMited to the finite set of measured output valu¥s =
tainties as unstructured but bounded by some constant Bfi:¥2,---,yn} and the finite set of input dat& =
function, and Assumption 2 guarantees that in the absent@t: 22;-- - 2N}
of faults the bounds of the interval can be determined. As , _ 9(z), g€G, % eCCRy; eRi=1,...,N (9
a consequence, a confidence bands of outputs guarantee that
process outputs exhibiting normal behaviour are found in thEherefore, the upper and the lower boundary functions are
intervals y..7;|. However, due to the unknown effect of @Pproximated by fuzzy functions in the form given by Eqg.

the actual disturbance functions the exact bounds cannot @ Extending the_Stone-Weierstrass Theorem [11], there
defined analytically. In the proposed approach, introducinﬁXISt fuzzy systemg and f such that
the interval fuzzy model, the boundary responses will be 0<F(z)—g(z) <e, Vi,
obtained by a fuzzy function approximation of the bounds ) (10)
of a set of filtered input-output data that already comprises —e < f(z) —g(z) <0, Vi.
the effects of disturbances. The main requirement when defining the band is that it is as
o ) narrow as possible, within the proposed constraints.
B. Derivation of an interval fuzzy model To estimate the optimal parameters of the proposed fuzzy
A short description of the model derivation will be given,function the minimization of the maximum modelling error
and for further information the reader is referred to [10]. ¢ in Eqg. (10) over the whole input s& is performed. This
A static fuzzy TS-type model [8] in affine form with one implies the min-maxoptimization method, and..-norm is

antecedent variable can be given as a set of rules used as the modelling error measure, yielding
R;: ifz,isAj, theny:GJ-Tw, ji=1....,m (4) Héngléuziwz—i(zz” sty — f(zi) 20, an
The variabler, denotes the input or variable in premise, and min max lyi = f(z:)] sty — fz) <0.
® =zt

variabley is the output of the model. The antecedent variable

is connected withn fuzzy setsA;, and each fuzzy seA;  where f(z;) = B7©=(z;) and f(z;) = B7Ox(z;). Note

(j = 1,...,m) is associated with a real-valued functionthat the data are obtained by sampling different functions
pa,(zp) : R — [0,1], that produces a membership graderom G with arbitrary values ofz;,. The solutions to both

of the variablex, with respect to the fuzzy seA;. The problems can be found by linear programming, because both
consequent vector is denotad” = [v1,z2,...,2,,1]. As  problems can be viewed as linear programming problems,
the output functions are in affine form, 1 was added to thend this brings simplicity to the realization of the optimizing
vectorx. The system output is a linear combination of therocess.

consequent states, alj is a vector of fuzzy parameters. . _ _ _ )
The system in Eq. (4) can be described in closed form C. Residual formation and fault-isolation scenario

The main idea of the fault-detection approach is to fil-

T
y=pB" (z)0, (®)  ter both the input and the output data, thus obtaining a
where®T = [8,, ..., 8,,] denotes a coefficient matrix for the confidence band of filtered input-output data pairs, approx-
complete set Of}-u|és andl’ (z,) = [B1 (), . - B ()] i imate the band using the optimization procedure of the

a vector of normalized membership functions with elementFUMO, and connect as many INFUMOs as there are
that indicate the degree of fulfilment of the respective rul?utPuts in parallel to the process to get online estimations

Functionsg; (z,) can be defined as of the boundary outputs. For fault detection, the decision
I functions should consist of verifying that each measurement
Bi(xy) = fra; (Tp) 1 m ©6) belongs to the corresponding confidence band. In order to

JI\Fp) - ’ ’

Sy ba, () I provide guantitative information about the proximity of the



measurements to the closest interval bound, distances were
used, as presented in [3]. If a filtered output valye(t)

belongs to the corresponding interv 7fi(t),yfi(t)}, and
if the mean interval value is denoteg;(t), the proposed

distance is defined in the following way:

. . i it

i 7alt) < 5 (), dlyp,) = LD =900

Y, () = g7i(t) (12)
. _ yri(t) = 9ri(t)
if ypi(t) > Gri(t), dlypi) =
ri(t) > Gri(t), dlyypi) = U0~ 57s(0)

The distance in (12) is zero when the measurement is equal

to ¢¢, and approaches the value 1 if the measurement is
close to one of the interval bounds. A faulf = 1 is
signalled every timel(ys;) exceeds the value 1, anfd =0
otherwise. For fault isolation purposes the fault signals are
characterized by an incidence matrix. The rows of this matrix
belong to residuals and its columns are obtained in responde The supplying flow rates coming from an electric pump
to the particular faults. The structure is isolating if columnd0 tank 1 are denoted,(¢), and there is an outflow from
are different. In our case, a fault is characterized by Nk 2 denotedp(t). Using the mass balance equations and
Corresponding 3_d|g|t binary number where fault sign&|s Toricelli's rule, the following equations are obtained:

are the multiples of succesive powers of number?2 ). _
(_Kplslgn(hl — h2)\/2g|h1 — ha| + Ch)

1
Fig. 1 gives a schematic representation of the proposed fauftr = A.
(Kplsign(hl — h2)\/2glh1 — ha| — Kpa/ 2gh2)

isolation system. The block denoted LPF represents a linear 15
(13)
where K1 = a15,1 and K2 = a2Sp2 denote the outflow

filter, and the distances are calculated in the DIST blocké12 A,
constants, ang is the gravity acceleration. Let; = a; = 1

Fig. 2. Two-tank laboratory plant

connected to the outputs of the INFUMOSs. The output of
the block denoted Fault isolation logi¢, is a sum of the
products of the fault signalg = f; - 2° + fo - 21 + f3 - 22

. v, for the sake of simplicity.
PROCESS > To get an input-output system that is similar to industrial
I processes the model will be modified in the following way.
3 The input to the system is the electric-pump voltagét)
LPF LPF that produces the inlet flow

q1(t) = Ko (14 v1(t))ua (¢), (14)
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Fig. 1.

Fault-isolation system using INFUMO models for FD

I1l. SIMULATION EXAMPLE
In this section the benefits of the proposed method will bBY @ flow-meter mounted on the connection pipe. The flow

INFUMO 1 . .
‘ v where K,, is the voltage-to-flow-conversion constant, and
_ Yy - i ion. i
W 73, A Pt | v1(t) denotes the inaccuracy of the conversion. The first two

measurable output signals are the voltages of the pressure
sensors, converting the fluid levels(t) and ho(t) in tanks

1 and 2 into the output voltages (¢) and y»(¢) according

to the following equation:

Y1 (t) = Khl (1 + I/Q(t))hl(t)
Y2(t) = Kna (1 + v3(t)) ha(t),

where Kj; and K, are the height-to-voltage-conversion
constants, and,(t) andvs(t) denote the inaccuracies of the
conversion. The third output is the voltage(t) produced

(15)

illustrated by a simulation example. A well-known bench-412(t) is transformed into voltage following the equation
mark problem will be considered. It deals with a laboratory _

plant using two tanks with fluid flow, as was described in ys(t) = K (1+ va(t) qra t), (16)
[12]. The two cylindrical tanks are identical, with a crosswhere K, and v4(t) are presented analogously as in (15).
sectionA4, = 0.0154 m?. The cross section of the connectionThe values of the constants afé, = 8.8 - 107¢ m3/Vs,
pipe and the outlet pipe i$,; = S,z = 3.6-107° m?, K, = 1.1364-10° Vs/m® and K;,; = Kp2 = 16.667 V/m,
and the liquid levels in the two tanks are denofedand and the upper bounds of the inaccuracies mare= v, =
ho, respectively. The plant-setup scheme is presented in Figg = 7, = 0.03.
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The set of faults under consideration will follow the 4
examples presented in [14] and [12], with the exception of,
three additional sensor faults that will serve as an efficiencys 2
test for the proposed fault-isolation system. The following
faults will be considered: o 1 2 3 4 s o 1 2 3 4 5

o Leakage in tank 1 The leak is assumed to be circular o 10 o

in shape and of unknown radius. As a consequence, _ °
the outflow rate of the unknown-size leak §$1 = ‘;’m-z
ar1m(r1)%v/2gh;. 1

« Leakage in tank 2 Analogously to the case of leakage °

in tank 1, the outflow rate igse = asm(r2)?\/2ghs. 10t 10 10

« Offset in sensor 1 A simple multiplicative sensor 3
fault is assumed by letting the actual voltage value 2

1

0

Y5,
&

Y3,
&

¥3.20®
(4]

be described byyi(t) = yi(t) + (1 — Kiofp)yi(t), =
where y;(t) is the voltage in the non-fault case, and
K5 € [0,1] is the fault constant. ° ot 2wt Xlof’ L Xlo?
« Offsetin sensor 2 Analogously to the case of the offset
in sensor 1, the actual voltage is describedybit) =  Fig. 4. The second and the third output signals: the first, the second, and
y2(t) + (1 — K2off)y2 (t). the last experiment
« Offset in sensor 3 Analogously to the previous cases,
the actual voltage is described by(t) = y3(¢) + (1 —
Kaopp)ys(t). 1/(Tys + 1). The optimal d.esign of the LPF time constant
With reference to the given INFUMO identification proce-Was not considered in this study. The cut-off frequency
dure, a confidence band of input-output data must be definggi Was chosen according to the absolute values of the
This band will also include all unexpected output deviation§OUrier transforms of the output signals. Hence, the filter
due to parameter uncertainties. A set of 20 experiments wH®'€ constant was defined @ = 1/w; = 800 s. This way
carried out. The inputs and associated signals from the fild{r€€ compact sets of measurements that represent steady-
output are shown in Fig. 3, and the associated signals frofi@t€ System behaviours are obtained. They can be seen as
the other two outputs are presented in Fig. 4. For the saR@Proximations of static input-output mapping areas. Plots
of brevity, only the first, the second, and the last data set@ Fi9- 5 present the areas.
are presented. One of the major benefits of the interval fuzzy

model identification, shown in Fig. 3, is that the input signals » 8
can be arbitrary. 56
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Fig. 3. The inputs and first output signals: the first, the second, and the Filtered input u,

last experiment

Fig. 5. Set of filtered input-output data with boundary points and boundary
The input and output signals are lead through a low-pa$s8FUMO functions for the first, second and third outputs

filter (LPF) whose structure was chosen as a simple first-
order system, represented by the transfer functiopn = To avoid the problems with optimization convergence due



to vast amount of input-output data, a simple data-reductics) a leakage of, = 2 - 1072 m in tank 2 att;.que =
method was performed to determine the boundary point80000 — 25000 s, a 20% offset in sensor K(,s; = 0.2)

The range of input measurements was divided into subspaast,,;y = 30000 — 35000 s, a 20% offset in sensor 2

of equal length that was chosen in accordance to the subsp&é&, ¢ = 0.2) at tar¢ = 40000 — 45000 s, and a 20%
with the highest data density. In each subspace the extrenudiset in sensor 3K3,¢5 = 0.2) at 3, = 50000 — 55000
points were determined. Due to space limitations only the, respectively. The input test signal is presented in the upper
resulting sets of boundary points are shown in the plots gflot of Fig. 6. According to the fault signals from the DIST
figure 5. These data were used as the training data set for thlecks, the incidence matrix was defined as given in Table
INFUMO identification. Static INFUMOs were employed. |.
This brings additional reduction of the number of fuzzy
parameters to be optimized. The membership functions of the
INFUMO antecedent variables were of triangular shape and
arranged using grid partitioning [1]. According to the data-

TABLE |
INCIDENCE MATRIX FOR THE SET OF FAULTS

. .. Fault || Leak 1 || Leak 2 || Offset 1 || Offset 2 || Offset 3
area shape, it was sufficient to use 4 fuzzy subsets for the—; 1 T T 0 0
upper and lower fuzzy functions. The membership functions [ 7, 1 1 0 1 0
are presented in figure 6. f3 1 0 0 0 1
f 7 3 1 2 4
_ 8 1
g .
3 6l i The results of the test are presented in figures 7 to 9. The
8 upper diagrams demonstrate the distance-calculation, and in
2 4: 1 the lower diagrams the filtered process outpyts and the
) ‘ ‘ ‘ ‘ ‘ INFUMO boundary functiongj;, y,, are shown.
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% Fig. 7. Results of the fault detection with INFUMO1
&
Q .
e O ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ The proposed FD system using the INFUMOSs successfully
= o 1 2 3 4 5 6 7 8 tracks the filtered output crossings of the permitted bands. In

! the shaded areas, faults are declared with a reasonably small
Fig. 6. Input test signal and membership-function arrangement for thtéme delay’_ depending on the time cons.tant (_)f the propoged
INFUMOs low-pass filter. The result of the fault-isolation system is
o ) presented in 10.
The parameters were optimized using the proposed IN- |t can be seen that the FDI system successfully tracks and

FUMO optimization algorithm in (11). The resulting bound-characterizes all the faults from the given set.
ary functions can be seen in figure 5. It is evident that the

min-max optimization gave satisfactory results in approxi- IV. CONCLUSION

mating the given area. A novel approach of the fault detection and isolation for
To realize a fault-isolation system, the INFUMOs area class of nonlinear input-output systems was presented.

connected to the process in parallel, as shown in Fig. 1. [fhe interval fuzzy model (INFUMO), formerly used in

the test experiment a leakagergf=2-10"2 min tank 1 is robust identification of nonlinear functions, was applied in

assumed to occur in the time period,,; = 10000 —15000 the residual generation stage of the FDI. The benefit is to
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be able to model a family of system responses from the
confidence band, already including the effects of uncertainfo]
ties, that is based only on the input-output data. Applying
low-pass filtering when obtaining the input-output data sgfg,
makes it possible to use relatively simple fuzzy structure
of the INFUMO, without any significant loss in FD-stage 1]
efficiency. The presented example illustrates that by usir{g
the INFUMO-based approach, faults can be successfully
isolated, even though only a limited amount of the inputt2]
output data is available.

Investigating the performance changes resulting from dif-
ferent choices of filter structure, applying the proposet3!
method on a broader range of systems, and investigating
possible extensions to frequency-based methods and faui]
tolerant control deserves further attention. In addition, the
results of the simulated example demonstrate the quality of
performance coupled with simplicity of application, which
is very important from the application point of view.

| Leak 1 Leak 2 Offset1  Offset2  Offset3 |
0 1 2 3 4 5 6
tis] x 10"

Fig. 10. Results of the fault isolation with a bank of INFUMOs
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